DE10000 USER MANUAL

PLUGIN DEVELOPMENT

TestPlanner

testplanner

J) peico

© 2024, DEICO Engineering Inc.
Ankara, Turkey
All rights reserved.
Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part,
without the prior written approval of DEICO Engineering Inc., is strictly prohibited.
These are the original instructions in English.

Document number: SBL-0038 Rev.0 2023

J) pEIco

Contents
INTRODUGCTION ...ttt ettt ettt et sa e bt et e se e sas e e sme e e bt e ss e e st e enneeeaneenneesarean 2
OVEIVIBW ..ttt ettt e e et et e e e s e s e b et e e e e e s s e s b br et et e e e s e seannraeaeeeeessns 2
LI L A XU T 11T o T PSPPI 2
Prerequisite KNOWIBAZEcoovueiiii ettt e e e e e 2
GETTING STARTED ..ottt ettt ettt ettt et e eat e e bt e sate s abe e s ateebeesabeebeesaeeenseenaee 2
Plugin Development COMPONENTScccc it e e e e s e e e e e e s nneaeaeeas 2
Installation and Setup INSErUCLIONScoeeeiiieeee e 3
Accessing and USING DLL FIlES ..evvei it e e e e e e e e e sarerre e e e e e e 3
Creating TestPlanner Plugin Project from Templatecoccciiiieeiiee e, 4
EXTENDED FEATURES. ..« s 5
= g Lo F=To I T A =T o LSRR 5
I g L IV o =3 8
LIMItCRECK() MEENOTuiviiiiiiiiiiieeec e e e e e e 9
PUDBIiIShRESUIES() METNOMcooiiiiieeeiee e 9
IMage PUBIISNING TSt STEP ciieiiiiieeeee e e e e e e s e rrrrer e e e e e e e e e nnnnes 10
INFOrMAtIVE TEST ST iiiiii i e e e e e e e e e s e nareeeeeeeeeeeennnnes 11
IVIIXINS .ttt ettt et s et e et e e s at e et e e s ate e beesheeeabeesabeeabeesateenbeesabeenbeesaeeenbeenaee 13
0= oY= Lo 1Y (1 o SRRt 14
0T 0T oAV, (T RSP 16
Set Last Verdict IMIIXINeoeiiiiieieceeeeee et 17
BEST PRAGCTICES ...ttt ettt ettt ettt ettt sae e et esae e et e e sae e e b e e sseeeabeenneeenneennee 18
UNderstand the BasiCscoouiiiiiiiiiiieiiiccie et 18
Error Handling and DEBUZEING.......cviei ittt e e e nree e e e e e e enanes 18
e IO T YT Y o oY1 oY - EEPRRS 18
TROUBLESHOOTING ...ttt ittt sttt e sme e s e me e et sme e sneenmneeneennes 19
Common ISSUES AN SOIULIONSc..veiiiiiiieieeee e 19
CONTACT & SUPPORT ...ttt sttt ettt sttt st se e s ane e ne e s a e sse e san e e neeeneesneeennees 20

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

INTRODUCTION

Overview

TestPlanner provides a robust framework for Plugin Development based on OpenTAP plugins,
enabling the creation of plugins with extended features. This APl includes enhancements such
as extended test steps and mixins, designed to offer more flexibility and functionality to plugin
developers.

Target Audience

This document is intended for plugin developers and users of the developed plugins. It aims
to provide comprehensive information about using TestPlanner’s plugin development API,
ensuring both developers and end-users can effectively utilize and integrate these extended
features into their workflows.

Note This document assumes that developers are familiar with the basics of OpenTAP
plugins.

Prerequisite Knowledge

For those new to OpenTAP or in need of a refresher, reviewing the OpenTAP basics
documentation is recommended. This foundational knowledge will help developers
understand the core concepts and functionalities essential for developing plugins with
TestPlanner. The OpenTAP developer guide can be accessed here.

Note By ensuring familiarity with OpenTAP, users will be better equipped to leverage
the extended features provided by TestPlanner.

GETTING STARTED

Plugin Development Components

TestPlanner plugin development includes two essential DLL files:

= TestPlanner.PluginDevelopment: This DLL is developed using .NET Standard 2.0,
ensuring compatibility with both .NET Core and .NET Framework. It contains the core
functionalities required for plugin development.

= TestPlanner.PluginDevelopment.Gui: This DLL is specifically designed for the .NET
Framework and includes GUI components necessary for creating views within the
framework.

These components provide the foundational elements required for developing and
integrating plugins with extended features in TestPlanner.

www.deico.com.tr

http://www.deico.com.tr/
https://doc.opentap.io/Developer%20Guide/Introduction/Readme.html

J) pEIco

Installation and Setup Instructions

TestPlanner plugin development components are installed automatically when TestPlanner is
installed using its setup file. To verify successful installation, the OpenTAP’s packages
directory at C:Files must be checked. The DLL files should be present in this directory.

Note Alternatively, the plugin development components can be installed manually
using the .TapPackage file TestPlanner.PluginDevelopment.X.X.X, where XXX
represents the version number.

To install the .TapPackage file manually, the steps below should be followed.
= Using the TestPlanner Packagelnstaller:

1. Double-click on the .TapPackage file to launch the Packagelnstaller and
complete the installation.

= Using Command Line:

1. Openacommand prompt.
2. Navigate to the OpenTAP directory:
cd C:\Program Files\OpenTAP
3. Run the following command to install the package:
tap package install "<path to .TapPackage file>"

Accessing and Using DLL Files

There are 2 primary ways to access and use the DLL files for TestPlanner plugin development.

= Using Visual Studio TestPlanner Template: During the package installation, a Visual

Studio plugin project template is automatically installed, streamlining the
development process for plugin developers. By following the instructions for creating
a new plugin project with this template, developers can:

o Quickly set up a new project with the necessary configuration,

o Automatically import the required DLLs,

o Generate initial plugin files, reducing the setup time and potential

configuration errors.

= Manually Importing DLLs: For those who prefer manual configuration, the DLL files
can be directly imported into an OpenTAP plugin project in Visual Studio by following
the steps below.

1. Navigate to C:Files.PluginDevelopment.

Add the DLL files to the Visual Studio project.

3. Once imported, the functionalities provided by the DLLs can be used in the
OpenTAP plugin project.

N

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

‘@ Note Both methods ensure that developers have access to the core functionalities and
GUI components necessary for developing TestPlanner plugins.

Creating TestPlanner Plugin Project from Template

To create a plugin project using the TestPlanner template, the steps below should be

followed.

N

Open Visual Studio and select Create a new project from the start window.
Search for TestPlanner template using the search bar.

3. Select OpenTap TestPlanner Project from the list of templates and click on Next to

proceed.

Create a new project

Recent project templates

B Console App

=1 WPF Application
™} wPF App (.NET Framework)
OpenTAP TestPlanner Project (DEICD)

4§ Class Library (.NET Framework)

¥y Class Library

testplanner

All languages All platforms

OpenTAP TestPlanner Project (DEICO)
OpenTAP TestPlanner Project

c# Desktop Linux mac0s OpenTAP

Windows

All project types

TestPlanner

Not finding what you're looking for?

Install more tools and features

Figure 1: Creating a New Project

4. Configure the new project, provide a name and choose the directory where the project

will be saved.

5. During the project setup, developers will have the option to select specific plugins that
they want to generate. Choose the desired plugins and Editor for debugging the

plugin.

6. Click Create to finalize the project creation.

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

Additional information

OpenTAP TestPlanner Project (DEICO) c# Desktop Linux mac0S OpenTAP TestPlanner Windows

+| Include TestStep)
Include DUT ()
Include Instrument
Include ComponentSettings O
Include ResultListener O
Include CliAction (D

Editor ()

DEICO TestPlanner

Create

Figure 2: The New Project

Following these steps will set up a new TestPlanner plugin project with the necessary
configuration and initial files, allowing developers to start developing their plugins quickly and
efficiently.

EXTENDED FEATURES

The Plugin Development APl extends OpenTAP’s test steps to incorporate new features,
enhancing the functionality and flexibility of the plugins.

‘@ Note TestPlanner plugins are designed to work cohesively based on the Plugin
Development API. For instance, the following features are utilized by PDF test report
plugins. This means that the Plugin Development APl serves as a foundational interface
for plugins, and developed plugins interact with each other through this API.

Extended Test Step

TestPlanner Plugin Development API offers a base class named ExtTestStep for creating
extended test steps. This class introduces several new test step settings under the Results
and Limits group.

= Selectable Results: Allows users to select specific results they want to capture during
the test execution. Selectable results are listed in a combobox. Developers must add
Output attribute to their test settings during development.

www.deico.com.tr

http://www.deico.com.tr/
https://doc.opentap.io/Developer%20Guide/Test%20Step/Readme.html#inputs-and-outputs

J) pEIco

= Enable/Disable Result Publishing: Provides the option to enable or disable the
publishing of test results. When this option is enabled, the selected test result will be
published to result listeners.

= Enable/Disable Limit Check: Allows users to enable or disable limit checks for the test
results. When this option is enabled, the result will be compared with the limits to
decide the result (pass or fail) of the test step.

= Limit & Result Format: Enables the configuration of the format for limits and results.
The format is specified similar to C#’s numeric format. Users can use 0 for mandatory

place and # as an optional place.

= Upper and Lower Limits: Sets the upper and lower boundaries for acceptable test
results.

= Unit: Specifies the unit of the measurement for the test results.

Test Step Settings » — X
® Output 0
Q@ Common
Enabled
Step Name MyTestStep

Break Conditions
Description Insert a description here
© Results and Limits
Select result:
Q Results
Enabled
Q@ Limits
Enabled
Limit & result format: 0.4#
Upper limit
Lower limit

Unit:

Figure 3: Test Step Settings

These settings provide control over the result of test steps by offering users limit values and
enabling them to select which results will be displayed in their test reports. This ensures that
users can tailor the output to meet their specific needs and maintain clarity in their test
documentation.

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

ExtTestStep does not automatically compares result with limits or publishes results to result
listeners. Developers need to call two methods in the Run() method. These methods are
LimitCheck() and PublishResults().

Note Order of calling these methods are important. LimitCheck() must be called
before PublishResults().

To create an extended test step, developers must inherit from the ExtTestStep class. An
example of an extended test step is given below:

[Display("Create Random Number", Description: "Creates a random double between
min and max values", Group: "New Plugin")]

public class MyTestStep : ExtTestStep
{

#region Settings
// ToDo: Add property here for each parameter the end user should be able to chan

ge
[Display("Max", Order: 1)] public int Maximum { get; set; } = 10;

[Display("Output"”, Order:3)]
[Output]
public double Output { get; set; }

H#endregion

private Random random;
public MyTestStep()

{
// ToDo: Set default values for properties / settings.

random = new Random();

}

public override void PrePlanRun()

{
base.PrePlanRun();
// ToDo: Optionally add any setup code this step needs to run before the testplan
starts

}

public override void Run()

{
// ToDo: Add test case code here

Output = random.NextDouble() * Maximum;

LimitCheck();

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

PublishResults();
}

public override void PostPlanRun()
{
// ToDo: Optionally add any cleanup code this step needs to run after the entire t
estplan has finished
base.PostPlanRun();

}
}

Execution output of this test step is given below:

B e Scttiog: Detug Viem Hep TestPlanner - Untitied® Jooco - 8 x
DQ2C OO RR > HE et bk 258ms
- X | TestPun # = X | Test Step Settings * =%

s M ©

8510843545081

MyTestStep

Creates 3 ranom Oouble between min B0 max
vakes,

Qs wirnings © rrormatics Q Detug Cieae Log Panet

Figure 4: Execution Output

Limit Types

Comparisons are made according to the limit type. Developers must know about which data
type corresponds to which limit type. The following table shows this relation.

Table 1: Data & Limit Types

Data Type(s) Limit Type(s)

double, int, uint, float, byte Point limit
double[], int[], uint[], float[], byte[] Numeric array limit
string String limit

string(] String array limit
bool Boolean limit
bool[] Boolean array limit

DE10000_USER MANUAL (PLUGIN DEVELOPMENT)
Rev. No:0 Rev. Date: 08.11.2024

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

LimitCheck() Method

Developers might need to understand how LimitCheck() operates when developing their own
plugins. The pseudocode for this method is provided below.

If limit check is disabled, return without comparing output and limits.

Find the selected output member chosen by the user.

Determine the limit type (point limit, array limit, boolean limit or string limit).
Call comparison methods according to the limit type to compare output with the
limit(s).

. Upgrade the test step’s verdict according to the comparison result.

6. If the limit type is a double array and show graph option is enabled, display limits
and output on a graph.

PwnNPE

‘é Note This is a straightforward method and developers just need to call the
LimitCheck() method in their Run() method.

PublishResults() Method

Result listeners must be developed in conjunction with the data table published by this
method. This method is crucial for how result listeners receive output data.

Note Before delving into details, developers should understand the result publishing
mechanism of OpenTAP.

The results are published according to the limit type.

Point Limit
The following method shows how results are published using Results.Publish() method of
OpenTAP.

Results.Publish(Name, new List<string>() {"Lower limit", "Result", "Upper limit", "Uni
t", "Verdict", "Format" },

PointLowerLimit, res, PointUpperLimit, unit, ComparePointLimit(res), DoubleForm
at);

The parameters are described below:
= Name: Test step’s name.
= new list(){...}: Data table’s headers. Columns are Lower Limit, Result, Upper Limit,

Unit, Verdict, and Format in order.

‘@ Note The remaining parameters are the information matching the column headers.

www.deico.com.tr

http://www.deico.com.tr/
https://doc.opentap.io/Developer%20Guide/Test%20Step/Readme.html#publishing-results
https://doc.opentap.io/Developer%20Guide/Test%20Step/Readme.html#publishing-results

J) pEIco

Numeric Array Limit
The following method shows how results are published using Results.PublishTable() method
of OpenTAP.

Results.PublishTable(Name, new List<string>() { "Lower limit", "Result", "Upper limit"
, "Unit", "Verdict", "X-Axis", "Format"},..........);

Results.PublishTable() provides its parameters to be arrays. All results and limits are provided
to result listeners in an array. Other parameters like Unit and Format are provided in arrays
also.

The only different header from the point limits is the X-axis. The X-axis column contains the

x-axis data of a plot if developers want to display a plot on their report.

Remaining Limit Types
Remaining limit types have the exact same column headers as the point limit.

Note This information is given to developers because if they are developing a result
listener, they need to know what kind of a data is provided to the result listeners by
ExtTestSteps.

Image Publishing Test Step

Another extended test step provided by the TestPlanner Plugin Development API is the
ImagePublishingStep, which is used to publish images to TestPlanner result listeners. There
is an existing plugin called Advanced Test Steps that implements ImagePublishingStep.

If developers wish to implement their own custom behavior for publishing an image to result
listeners, they need to create a test step that inherits from ImagePublishingStep.

Note A crucial requirement is that the test step must include a property with type
OpenTap.Picture named Picture and set the verdict of the test step to any value.

PublishResults() method is not required in the Run() method to publish image to result
listeners. An example implementation is provided below:

[Display("Publish Image", Description: "Publishes an image to the TestPlanner result |
isteners", Group: "New Plugin")]

public class Publishimage : ImagePublishingStep

{

public Picture Picture { get; } = new Picture();

[Display("Source", "The source of the picture. Can be a URL or a file path.", "Pictur
e", Order: 2, Collapsed: true)]

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

[FilePath(FilePathAttribute.BehaviorChoice.Open)]
public string PictureSource

{

get => Picture.Source;
set => Picture.Source = value;

}

public override void Run()

{
UpgradeVerdict(Verdict.Pass);

}
}

Below is the test step settings seen on TestPlanner Editor.

Figure 5: Test Step Settings on TestPlanner Editor

Note This test step does not automatically add an image to the test reports. It must
be used in conjunction with a result listener plugin to include the image in the test
report.

Informative Test Step

Informative test step is very similar to image publishing steps. Plugin development API
provides a base class called InformativeTestStepBase for adding extra information to test
reports. There is an existing plugin called Advanced Test Steps that implements
InformativeTestStepBase.

If developers aim to implement their own behavior for including additional information on
their test reports, they need to create a test step that inherits from InformativeTestStepBase.

Note A crucial requirement is that in the Run() method of the test step, additional
information must be assigned to the property called Information provided by the base
class.

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

PublishResults() method is not required in the Run() method to publish image to result
listeners. An example implementation is provided below:

[Display("Publish Info", Description: "Publishes additional custom information to the
TestPlanner result listeners", Group: "New Plugin")]
public class InfoStep : InformativeTestStepBase
{
[Display("Extra info")]
public string Extralnfo { get; set; }

public override void Run()

{

Information = Extralnfo;
if(this.EnablePublish)
Log.Info(Information);

Below is the test step settings seen on TestPlanner Editor.

Figure 6: Test Steps Settings on TestPlanner Editor

DE10000_USER MANUAL (PLUGIN DEVELOPMENT)
Rev. No:0 Rev. Date: 08.11.2024 www.deico.com.tr 12

http://www.deico.com.tr/

J) pEIco

Additional information is seen like below in a test report.

Order Name Lower Limit Result Upper Limit Unit Status

12 Publish Info - This is additional info

Figure 7: Additional Information in a Test Report

‘@ Note This test step does not automatically add additional information to the test
reports. It must be used in conjunction with a result listener plugin to include the
additional information in the test report. Developing a result listener plugin is out of
scope of this document, but briefly public override void OnResultPublished(Guid
stepRun, ResultTable result) method contains published results in the ResultTable
parameter.

MIXINS
OpenTAP’s Mixins are small units of functionality that can be integrated or ‘mixed in” with an
object. With the Plugin Development API, developers can achieve both methods of

integration, allowing for flexible and dynamic enhancement of test steps.

Mixins can be integrated to plugins during development or in the runtime by providing a
IMixinBuilder for that mixin. With Plugin Development API, developers can accomplish both.

There are three mixins provided by TestPlanner Plugin Development API.

www.deico.com.tr

http://www.deico.com.tr/
https://doc.opentap.io/Developer%20Guide/Test%20Step/Readme.html#mixins

J) pEIco

Repeat Mixin

The Repeat Mixin adds repeating functionality to test steps, allowing a test step to be
repeated either until a desired verdict is obtained or for a specified number of repetitions.

When the Repeat Mixin is added to a test step, its settings appear within the test step settings.
To configure the Repeat Mixin, the below steps should be followed:

B

Select repeat condition: Choose whether to repeat for a specific count or until the
expected verdict is satisfied.
Enter repeat count: If the repeat for a specific count option is selected, enter the
desired number of repetitions.
Specify expected verdict: If the repeat until expected verdict is satisfied option is
selected, specify the expected verdict.
Enter maximum repeat count: This limits the number of repetitions to prevent infinite
loops or excessive repeats.
Enable verdict upgrading (optional): This option allows users to set the test step’s
final verdict based on the number of pass/fail counts.
For example, if this option is enabled and the expected pass count is 3 out of
10 attempts, the test step’s verdict will be set as desired once a total of 3 pass
verdicts is obtained, and the remaining repeats will be discarded.

Note Repeat mixin can either be integrated to the test step during development or
added during run time.

Adding repeat mixin during run time

To add repeat mixin during run time, the steps below must be followed.

1.

In TestPlanner Editor, right click on the settings of the test step that repeat mixin will
be added to.

X | Test Step Settings > - X

| Log Severity

a specified message to the log with a
&

Figure 8: Adding Mixin

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

2. Click on Add Mixin menu item.
3. Select Repeat Mixin from the available mixins on the displayed window.

OpenTap.MixinBuilderUi =

Mixin Repeat Mixin

Figure 9: Repeat Mixin Selection

4. Click on OK to add the mixin.
5. Configure the mixin settings added to the test step settings.

Test Step Settings # — X
Log Severity Information
Log Message Log message
@ Comman
Enabled /]
Step Name Loag Output

Break Conditions

- Qutputs a specified message to the
Description log With a specified severity.

@ Repeat Mixin
Repeat Condition Repeat for a specific count
Repeat Count 1

Set Verdict with Pass/Fail count

Figure 10: Mixin Settings Configuration

DE10000_USER MANUAL (PLUGIN DEVELOPMENT)

Rev. No:0 Rev. Date: 08.11.2024 www.deico.com.tr 15

http://www.deico.com.tr/

J) pEIco

Integrating repeat mixin during development
To integrate repeat mixin during development, the steps below must be followed.

1. Add the following property with the EmbedProperties attribute to the code.

[EmbedProperties]
public RepeatMixin Repeat { get; set; } = new RepeatMixin();

2. Configure the mixin settings added to the test step settings.

Developers or users can add mixins using either method. Both approaches will achieve the
same result, allowing the test step to leverage the repeating functionality provided by the
Repeat Mixin.

Note Mixin development is out of scope of this document but adding mixins on run
time is a more flexible way of adding mixins. If developers want to develop a mixin,
OpenTAP's guide on Mixins can be referred to.

Jump Mixin

The Jump Mixin adds jumping functionality to test steps, allowing the test plan execution to
jump to another test step if a specific condition is met.

When the Jump Mixin is added to a test step, its settings appear within the test step settings.
To configure the Jump Mixin, the steps below should be followed:

1. Select expected verdict: Choose the expected verdict. If this verdict is satisfied, the
jump operation will be performed.

2. Select which step to jump: Choose the test step to which the jump will be performed.
Only test steps on the same level in the test plan are jumpable.

3. Enable maximum jump count (optional): This option allows users to set a limit on the
number of jumps to prevent infinite loops.

4. Enter maximum jump count (optional): If the maximum jump count is enabled,
specify the maximum number of jumps that can be performed.

www.deico.com.tr

http://www.deico.com.tr/
https://doc.opentap.io/Developer%20Guide/Test%20Step/Readme.html#mixins
https://doc.opentap.io/Developer%20Guide/Test%20Step/Readme.html#mixins

Test Step Settings
Log Severity

Log Message
& Common
Enabled

Step Name

Break Conditions

Description

Q Jump Mixin

Expected Verdict

Jumpable Step

J) pEIco

Information

Log Message 1

Log Outputl

Outputs a specified message to the log
with a specified severity.

Not Set

Log Output2

Enable maximum jump count

Figure 11: Jump Mixin Configuration

‘@ Note Jump Mixin can either be integrated to the test step during development or
added during run time, similar to the Repeat Mixin.

Set Last Verdict Mixin

The Set Last Verdict Mixin is used to override a parent test step’s verdict. Typically, the verdict
of a parent step is determined based on its child steps’ verdicts, meaning if any child step fails,
the parent step’s verdict is also set to fail. However, when test steps are executed repetitively
under a parent step and the last execution’s verdict is pass, the parent step’s verdict might
still be set to fail.

By adding this mixin to a parent step, the parent step’s verdict is updated after all the child
steps have been executed. This ensures that the final verdict reflects the outcome of the last
executed child steps, allowing for more accurate representation of the test results.

Similar to all mixins, when the Set Last Verdict Mixin is added to a test step, its settings appear
within the test step settings. Set Last Verdict Mixin contains only one setting and it is used to
enable or disable the behavior.

Note Set Last Verdict Mixin can either be integrated to the test step during
development or added during run time, similar to the other mixins.

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

Log output of the mixin’s operation is provided below:

Figure 12: Log Output of the Mixin's Operation

‘é Note Without Set Last Verdict Mixin, verdict of the Sequence step would be set to fail.

BEST PRACTICES

Understand the Basics

Developers need to ensure they have a solid understanding of OpenTAP’s basics before diving
into TestPlanner plugin development. OpenTAP documentation can be referred to for a
comprehensive overview.

Error Handling and Debugging

Developers need to ensure their plugins handle errors gracefully, provide meaningful error
messages to users, and incorporate logging into their test steps to help with debugging and
tracking execution flow.

Plugin Versioning

Devlopers need to ensure to assign appropriate versions to their plugin using the package.xml
file. This helps in managing updates and maintaining compatibility.

Additionally, developers must verify that the TestPlanner Plugin Development dependency is
correctly specified in the package.xml file. This ensures that their plugin can properly integrate
and function with the TestPlanner framework.

www.deico.com.tr

http://www.deico.com.tr/
https://doc.opentap.io/Developer%20Guide/Introduction/Readme.html

J) pEIco

TROUBLESHOOTING

Common Issues and Solutions

Visual Studio Plugin Project Template is Missing

= Cause: In some cases, the plugin project template may not be installed due to the
installed version of .NET. Although TestPlanner’s setup file automatically installs the
required version, this issue can still occur.

= Solution: Ensure the latest .NET version is installed. Additionally, if multiple versions
of Visual Studio are installed on the computer, the project template will only be
installed to the latest version. Verify that the latest version of Visual Studio is being
used.

Selectable Output List is Empty in ExtTestStep

= Cause: The Output attribute may not be properly added to a property in the test step.
= Solution: Ensure the Output attribute is added to a property with proper accessors
(get & set accessors) in the test step.

OpenTAP Version Compatibility

= Cause: The installed version of OpenTAP may be incompatible with TestPlanner Plugin
Development.

= Solution: TestPlanner Plugin Development is compatible with OpenTAP version 9.22.3
and later. Ensure that version 9.22.3 or later is installed in the plugin project.

String Array Limit

= Cause: The string array limit is not yet implemented in the TestPlanner Plugin
Development API.

= Solution: This limit type will be added in future versions. Currently, there is no
workaround for this limitation.

Contact Support

= Action: If any issue is encountered that cannot be resolved, contact support. Before
doing so, gather relevant information such as error messages, log files, and steps to
reproduce the issue. Use the designated support channels provided in the next section
to report issues.

‘@ Note Providing detailed information will help support staff diagnose and resolve the
problem more quickly.

www.deico.com.tr

http://www.deico.com.tr/

J) pEIco

CONTACT & SUPPORT

If encountered any issue, support@deico.com.tr should be contacted, providing the following
information:

= Detailed description of the issue including steps to reproduce it,

= Any error messages and relevant log files,

= Specified versions of TestPlanner, OpenTAP, .NET, and any other relevant software,
= Project files or code snippets that demonstrate the issue (if possible).

www.deico.com.tr

http://www.deico.com.tr/
support@deico.com.tr%20

Contact

DEICO Head Office

Teknopark Ankara, Serhat Mah.,
2224 Cad., No:1 F Blok, Z-12,
Yenimahalle, Ankara, Tirkiye

support@deico.com.tr

+90 312 395 68 44

J) peico

www.deico.com.tr

J) peico

